

The following tables contain information on measured current consumption as well as calculated heat dissipation during what we see as the most extreme sustained normal operation (1/8 rated power).

LUCIA 120/2										
Level	Load	Load Output power			Line Watt *1)				Thermal Dissipation	
				VAC	IAC	In	Out	Dissipated	BTU/hr	kCal/hr
Standby w. remote Power Off.				230	0.032	0.88	0	1	3	1
				120	0.027	0.77	0	1	3	1
				100	0.028	0.76	0	1	3	1
Power on, Idling				230	0.21	11.9	0	12	41	10
				120	0.19	13.0	0	13	44	11
				100	0.22	13.1	0	13	45	11
Pink Pseudo Noise (1/8)	16 Ω / Ch.	30	x 2	230	0.22	25.3	7.5	18	61	15
				120	0.34	24.3	7.5	17	57	14
				100	0.40	24.6	7.5	17	58	15
	8 Ω / Ch.	60	x 2	230	0.30	35.6	15	21	70	18
				120	0.47	33.6	15	19	63	16
				100	0.54	34.4	15	19	66	17
	4 Ω / Ch.		x 2	230	0.30	36.3	15	21	73	18
		60		120	0.48	34.9	15	20	68	17
				100	0.55	35.3	15	20	69	17
	2 Ω / Ch.		x 2	230	0.32	37.7	15	23	77	20
		60		120	0.50	36.3	15	21	73	18
				100	0.57	36.6	15	22	74	19

^{*1)} The amplifier's PSU operates as a non-resistive load, so the calculation "Volts x Amps = Watts" would not be correct. Instead, measured and specified here is what is known as the "Active Power" in the amplifier providing useful, real-world values of power consumption and heat dissipation.

